Pasar al contenido principal
The Pseudocode for a "Perfect" Automated Insulin Delivery Algorithm
16 Sep 2025 By Richard O. White, M.D.

The Pseudocode for a "Perfect" Automated Insulin Delivery Algorithm

The development of a "perfect" automated insulin delivery algorithm involves several key components and considerations. Here's a comprehensive pseudocode outline that encapsulates the complex interactions between various physiological parameters, user input, and the algorithm's decisions. Blood Sugar Diagnosis Levels Explained From Mg Dl To Mmol L

```python

Initialize Variables

current_blood_sugar_level = get_blood_sugar_level() target_blood_sugar_range = [70, 180] # mg/dL user_input = get_user_input() meal_plan = get_meal_plan() physical_activity_level = get_physical_activity_level()

Main Loop

while True: # 1. Check Blood Sugar Levels if current_blood_sugar_level < target_blood_sugar_range[0]: # 1a. Bolus Insulin Dose Calculation bolus_dose = calculate_bolus_dose(user_input, meal_plan) administer_bolus_insulin(bolus_dose) elif current_blood_sugar_level > target_blood_sugar_range[1]: # 1b. Correction Insulin Dose Calculation correction_dose = calculate_correction_dose(current_blood_sugar_level) administer_correction_insulin(correction_dose) What Are Normal Blood Sugar Levels For Adults A Complete Guide

# 2. Adjust Insulin Dose Based on Physical Activity
if physical_activity_level > 3:
    # 2a. Increase Basal Insulin Dose
    basal_dose = calculate_basal_dose(physical_activity_level)
    administer_basal_insulin(basal_dose)

# 3. Monitor Blood Sugar Levels and Adjust Doses as Needed

# 4. Continuously Monitor User Input and Update Meal Plan
user_input = get_user_input()
meal_plan = update_meal_plan(user_input, meal_plan)

# 5. Sleep and Activity Patterns Monitoring and Adjustment
sleep_pattern = get_sleep_pattern()
activity_pattern = get_activity_pattern()
adjust_insulin_doses(sleep_pattern, activity_pattern)

# 6. Continuous Glucose Monitoring (CGM) Integration
cgm_data = get_cgm_data()
adjust_insulin_doses(cgm_data)

# 7. Insulin Dose Adjustment Based on A1C and Blood Sugar Trends
a1c_level = get_a1c_level()
blood_sugar_trends = get_blood_sugar_trends()
adjust_insulin_doses(a1c_level, blood_sugar_trends)

Function Definitions

def calculate_bolus_dose(user_input, meal_plan): # formula based on user input and meal plan pass Feeling Tired And Thirsty 10 Symptoms Of High Blood Sugar Hyperglycemia

def calculate_correction_dose(current_blood_sugar_level): # formula based on current blood sugar level pass

def calculate_basal_dose(physical_activity_level): # formula based on physical activity level pass

def administer_bolus_insulin(bolus_dose): # insulin delivery system pass

def administer_correction_insulin(correction_dose): # insulin delivery system pass

def administer_basal_insulin(basal_dose): # insulin delivery system pass

def get_blood_sugar_level(): # glucose meter or CGM integration pass

def get_user_input(): # user input and feedback pass

def get_meal_plan(): # meal planning and tracking pass

def get_physical_activity_level(): # activity tracking and feedback pass

def get_sleep_pattern(): # sleep tracking and feedback pass

def get_activity_pattern(): # activity tracking and feedback pass

def get_cgm_data(): # CGM integration pass

def get_a1c_level(): # A1C tracking and feedback pass

def get_blood_sugar_trends(): # blood sugar tracking and feedback pass ```

This comprehensive outline provides a starting point for developing a "perfect" automated insulin delivery algorithm that incorporates physiological parameters, user input, and real-time monitoring to optimize insulin delivery and manage blood sugar levels effectively.

Opciones de
accesibilidad
Tamaño de texto